
NAAK-Tree: An Index for Querying Spatial
Approximate Keywords

Ye-In Chang, Zih-Siang Chen and Yan-Guo Liou
Dept. of Computer Science and Engineering

National Sun Yat-Sen University
Kaohsiung, Taiwan, Republic of China

E-mail: changyi@cse.nsysu.edu.tw

Abstract—In recent years, the geographic information
system (GIS) databases develop quickly and play a sig-
nificant role in many applications. Many of these appli-
cations allow users to find objects with keywords and
spatial information at the same time. Most researches
in the spatial keyword queries only consider the exact
match between the database and query with the textual
information. Since users may not know how to spell the
exact keyword, they make a query with the approximate-
keyword, instead of the exact keyword. Therefore, how
to process the approximate-keyword query in the spatial
database becomes an important research topic. Alsubaiee
et al. have proposed the Location-Based-Approximate-
Keyword-tree (LBAK-tree) index structure which is to
augment a tree-based spatial index with approximate-
string indexes such as a gram-based index. However, the
LBAK-tree index structure is the R*-tree based index
structure. It will spend more time when build the index and
answer the spatial approximate-keyword query. Therefore,
in this paper, we propose the Nine-Area-Approximate-
Keyword-tree (NAAK-tree) index structure to process the
spatial approximate-keyword query. From our simulation
results, we show that the NAAK-tree is more efficient than
the LBAK-tree to build the index and answer the spatial
approximate-keyword query.

Index Terms—Approximate-Keyword, Index Structure,
Range Query, Spatial Database, Signature.

I. INTRODUCTION

The publicly available geographic information
system (GIS) databases contain important location-
based information and play a significant role in
many applications [7]. Due to the popularity of
keyword search, particularly on the Internet, many
of these applications allow the users to provide
a list of keywords that the spatial objects should
contain, in their description or other attribute [5].
The underlying location-based information entities

present in GIS databases fundamentally comprise of
two components: (a) spatial or location information
and (b) textual information. The queries asked on
location-based entities also contain spatial and tex-
tual components [7]. The queries are called spatial
keyword queries [5, 7, 8].

Most existing researches in the spatial keyword
queries only consider the exact match between the
database and query with the textual information.
However, users often do not know how to spell the
exact keyword. They always make a query with the
approximate-keyword. Therefore, the approximate
keyword query processing in the spatial database
becomes an important research topic.

The definition of the spatial approximate-
keyword (SAK) query has two parts: the spatial
query Qs and the string query Qt. A spatial con-
dition Qs is a rectangle or a circle. An approxi-
mate keyword condition Qt has a set of k pairs
{(w1, δ1), (w2, δ2), . . . , (wk, δk)}, where each key-
word wi with an associated similarity threshold δi.
The answer is to find all objects in the collection
that are within the spatial region Qs and satisfy the
approximate keyword condition Qt.

A spatial access method (SAM) is often designed
based on the spatial index structure. It partitions the
set of objects depending on the spatial proximity
such that each group can fit into a disk page. Its
structure depends on the distribution of objects in
the embedded space, e.g., the R-tree [6] and the
R*-tree [3].

We can separate the domain of string matching
into two parts, exact matching and approximate
string matching. Exact matching means finding the
positions of all substrings in the text which matches



the query pattern. The problem of approximate
string match is to find the text positions that match
a pattern with up to k errors. There are some
approaches [10, 11], which use the inverted index
and the q-grams to approximate string match.

The siqnature technique is that each attribute or
keyword of a record yields a bit pattern of width
W and K bits in W are set to 1. The disjunction
of all these bit patterns is performed to form the
record signature. There exists the fact that if a
record satisfies a query, then every bit position set
in a query signature must also be set in the record
signature. It is possible that a record signature
matches a query signature but the corresponding
record does not satisfy the query. This is called a
false match. The probability of false matches can
be manage arbitrarily small by appropriate choice
of parameters W and K [9].

Wang et al. proposed the 3-level hybrid index
structure integrating the R*-tree [3], inverted lists
and q-grams of the keywords [11]. Yao et al.
proposed a structure called MHR-tree [12]. The
MHR-tree is based on the R-tree [6] augmented
with the min-wise signature and the linear hashing
technique. Alsubaiee et al. proposed the LBAK-tree
index structure [1] which is to augment an R*-tree
with approximate-string indexes such as a gram-
based index. They store the keywords in the internal
nodes. Base on these keywords in all the internal
nodes, they separate these keywords into frequent
keywords and non frequent keywords. And then,
they use a function to decide which nodes to build
approximate indexes.

However, the R*-tree index structure has to look
up the MBRs of the children to decide which child
to insert a new object. The children or objects have
to be split and be reinserted in the R*-tree index
structure when the node is overflow. Since that they
store keywords in the internal nodes of the R*-tree,
they can not deal with keywords when building the
node of the R*-tree index structure at the same time,
or it may take more time to deal with keywords
when the internal nodes are split and reinserted.

When answering an SAK query based on the
LBAK-tree index structure, they have to find out
which nodes that satisfy the spatial condition of
SAK query. It has to check all the space of the
children in an internal node and process the textual

condition with the answers. The approximate index
can get the similar keywords sets corresponding to
each keyword of the textual condition of the SAK
query. However, based on their LBAK-tree index
structure, they have to check all the similar key-
words sets when processing in SA-Nodes and SK-
Nodes even if there is one of the similar keywords
set which is already an empty set. Therefore, finding
out the intersects of similar keywords sets and the
keywords stored in nodes takes more time when the
level of nodes is higher (if the root is the top).

To avoid these problems, in this paper, we
propose the Nine-Area-Approximate-Keyword-tree
(NAAK-tree) index structure to process spatial
approximate-keyword query. From our simulation
results, we show that the NAAK-tree index structure
is more efficient than the LBAK-tree structure.

The rest of the paper is organized as follows. In
Section 2, we give a related work of some index
structure for approximate keyword query. Section
3 presents the NAAK-tree index structure and the
SAK query processing. In Section 4, we study
the performance. Finally, we give a conclusion in
Section 5.

II. THE RELATED WORK

The LBAK-Tree [1] has better performance than
the previous approach [11,12] for approximate key-
word query processing in the spatial database. In
this section, we describe the data structure of the
LBAK-Tree.

Alsubaiee et al. proposed an index structure [1]
which is to augment a tree-based spatial index with
approximate-string indexes such as a gram-based in-
dex. The main idea of the LBAK-tree is to augment
a tree-based spatial index with abilities for approxi-
mate string search and keyword search. They use the
keyword-search ability to prune search paths. And
the LBAK-tree which is an R*-tree that has been
enhanced to support spatial approximate-keyword
queries. They classify the LBAK-tree nodes into
three types.

• S-Nodes : do not store any textual information
such as keywords or approximate indexes, and
can only be used for pruning based on the
spatial condition [1].

• SA-Nodes : store the union of keywords of
their subtree, and an approximate index on



those keywords. They use SA-Nodes to find
similar keywords, and to prune subtrees with
the spatial and approximate keyword condi-
tions [1].

• SK-Nodes : store the union of keywords of
their subtree, and prune with the spatial con-
dition and its keywords. Note that they must
have previously identified the relevant similar
keywords once we reach an SK-Node [1].

III. THE NAAK-TREE

In this section, we describe how to index the
database by using the NAAK-tree. The NAAK-tree
augments a tree-based spatial index NA-tree [4] with
abilities for approximate string search and keyword
search. We classifying the nodes of NAAK-tree into
three categories, and query processing based on our
index structure.

A. Data Structure

In this subsection, we first introduce the partition
numbering scheme which is used to organize the
spatial data in the NA-tree. Then, we introduce
the data structure of the NA-tree [4]. Finally, we
separate the nodes of the NA-tree into 3 types.

1) The Partition Numbering Scheme: There is
a common way to characterize the spatial object
by using the minimum boundary rectangle. The
minimum boundary rectangle is oriented parallel to
the coordinate axes, say X and Y. Thus an object O
is represented by its four bounding coordinates, Xl,
Xr (i.e. the leftmost and rightmost X coordinates,
respectively), Yb, and Yt (i.e. the bottommost and
topmost Y coordinates, respectively). Chang et. al.
use the two points, L(Xl, Yb) and U (Xr, Yt), to
represent a spatial object [4], where L and U is the
lower left coordinate and the upper right coordinate
of the object, respectively. They represent an object
as O(L, U ). L is same as U if the object is a point
data.

2) The NA-Tree: Tree structures handling multi-
dimensional data are constructed with internal nodes
and leaf nodes. In NA-tree [4], an internal node can
have nine, four, or two children. Since a leaf has no
children, leaves are terminal nodes. Data can only
be stored in the terminal node, not in an internal
node.

Region II

Region I Region III

Region IV

Fig. 1. The basic structure of NA-tree: four regions

Root

1st_child 2nd_child 3rd_child 4th_child 5th_child 6th_child 7th_child 8th_child 9th_child

1 2 3 4 5 6 7 8 9 5 7 9

5 7

5 7 9

6 8 9

6 8

6 8 9

1 2 3 4

Fig. 2. The basic structure of an NA-tree

An NA-tree is a structure based on data location
and organized by the spatial numbers. The spatial
space is decomposed into four regions, as shown
in Figure 1. Let Region I be the bucket numbers
between 0 and 1

4
(Max bucket + 1) − 1, Region II

be the bucket numbers between 1
4
(Max bucket+1)

and 1
2
(Max bucket + 1) − 1, Region III be the

bucket numbers between 1
2
(Max bucket + 1) and

3
4
(Max bucket + 1) − 1, and Region IV be the

bucket numbers between 3
4
(Max bucket + 1) and

Max bucket, where the Max bucket is the max-
imal bucket number of the space. Based on this
decomposition, an object is only nine cases are
possible lying on the space, as shown in Figure 2.

3) Three Categories of Nodes: After indexing the
spatial object by the NA-tree, we classify the nodes
of the NA-Tree into three Categories:

• FK(Frequent Keywords)-Nodes: There are
only the spatial condition in these nodes, but
some FK-Nodes above an NFK-Node have the
frequent keywords and approximate index on
the frequent keywords.

• NFK(Not Frequent Keywords)-Nodes: There
are the spatial condition, the union of keywords
of their subtrees, and an approximate index on
those keywords. The frequent keywords will be
removed from the NFK-Nodes.

• KS(Keyword Signature)-Nodes: There are the
spatial condition, the union of keywords of



Fig. 3. The index structure model

Fig. 4. The flowchart of the query

their subtrees, the LenSig and the KwdSig
of the union of keywords of their subtrees.

After indexing the spatial condition and the tex-
tual condition, our index structure model is shown
in Figure 3.

B. Spatial Approximate-Keyword Query Processing
In this subsection, we use a flowchart to describe

how to processing SAK queries using the NAAK-
Tree. Figure 4 shows the flowchart of the query
processing.

Figure 5 shows an example with query Q =
〈Qs, {(doraemon, 1), (snopy, 1), (animasion, 1)}〉.

Fig. 5. A query example: the region related to Qs.

Figure 5 is the region related to Qs. The gray
region also have objects but we choose some part
of the map to process our algorithm. Table I shows
the keywords in each object. There is a NAAK-
tree built on the database, as shown in Figure 6.
The objects in the database are all region data.
Node A is an FK-Node which has an approximate
index with frequent keyword ‘animation’. Node B
is a NFK-Node which has an approximate index
with keywords from its children except the frequent
keyword ‘animation’. When query Q is issued, we
initialize the similar-keyword sets KQ at root r.
After processing root r, we find that the fourth child
of the root intersect with Qs and it is FK-Node A.
Node A has the approximate index with frequent
keyword ‘animation’, which is similar to (anima-
sion, 1). Therefore, we can add ‘animation’ to KQ3.
After processing node A, we find that the third
child of node A intersects with Qs and it is NFK-
Node B. We use the node B’s approximate index to
get keyword w1’s similar-keyword set {doraemon,
doraemou} and keyword w2’s similar-keyword set
{snoopy, snopy}, and add them to KQ1 and KQ2,
respectively. At the end of processing node B, we
get new similar-keyword sets and use AKQi to rep-
resent them, as shown in Table II. After processing
node B, we find that the third, fourth, and seventh
children of node B intersect with Qs, push them into
queue E. Therefore, we further check these children
in the queue E with signature first. We represent
these children by N3, N4, and N7. At node N3,
the LenRecSig and KwdRecSig of node N3 are
the record signature of object P6 and P9, as shown
in Table III-(a) and Table III-(b). We can ignore
node N3 immediately because N3.LenRecSig

⋂

AKQ1.LenSigi 6= AKQ1.LenSigi, as shown in



TABLE I
THE KEYWORDS IN EACH OBJECT

P Keywords
P1 snoobe, kitti
P2 snoopy, kitty, animation
P3 snoobe, animation
P4 doraemon, snoopy
P5 doraemou, kity
P6 kitty, winnie, animation
P7 snoopy, kity
P8 doraemou, snoobe, animation
P9 snopy, mickey
P10 winnie, doraemon
P11 doraamou, snopy, animation
P12 doraemon, snopy, animation

P1 P2 P8 P10P6 P9 P7

P4 P5P3

���������������������������root

FK-Node

NFK-Node

P11 P12

A

B

r

N3 N4 N7

Fig. 6. The NAAK-tree of the example

Table III-(c). It is not matched, which means that
the node N3 does not have any keyword similar to
keyword w1(doraemon). According to the step that
shown in Figure 4. Finally, the answer set is P12.

IV. PERFORMANCE

In this section, we compare the performance of
the NAAK-tree index structure with that of the
LBAK-tree index structure in terms of the CPU
time.

We conduct our experiment on the dataset that
the data space is 10000 ∗ 10000. The simulation
is performed with the following variable parame-
ters settings as shown in Table IV. The threshold
which is used to decide the frequent keyword sets

TABLE II
THE SIMILAR-KEYWORD SETS WITH SIGNATURE AND Qt

AKQ Similar keywords LenSig KwdSig
AKQ1 doraemon 01000 100000000010000

doraemou 01000 000000001010000
AKQ2 snoopy 00010 000010000010000

snopy 00001 000010000010000
AKQ3 animation 10000 100000000000010

TABLE III
THE SIGNATURE AND KEYWORDS OF: (A) P6 AND P9; (B) N3; (C)

AKQi .

P LenRecSig KwdRecSig Keywords
P6 10011 100110100100010 kitty, winnie, animation
P9 00011 010010000010000 snopy, mickey

(a)

N LenRecSig KwdRecSig Keywords
N3 10011 110111100110010 kitty, winnie, snopy,

mickey, animation

(b)

AKQ LenSig KwdSig Similar keywords
AKQ1 01000 100000000010000 doraemon

01000 000000001010000 doraemou
AKQ2 00010 000010000010000 snoopy

00001 000010000010000 snopy
AKQ3 10000 100000000000010 animation

(c)

TABLE IV
PARAMETERS SETTING USED IN THE EXPERIMENT

Parameters Description
TV The threshold value of the node
NOB The number of data objects
SB The space budget for building approximate indexes

to 0.9.The size of length signature and keyword
signature are set to 10 and 26, respectively. The q
of q-grams in a gram-based approximate index is
set to 2. For query processing, we compare the two
methods using the average CPU time for processing
100 queries. The threshold value of the node TV
is set to 20. And the space budget for building
approximate indexes SB is set to 500MB.

Figure 7 shows the simulation result of the com-
parison of the construction of the LBAK-tree index
structure and the NAAK-tree index structure. From
Figure 7, we show that the performance of the
NAAK-tree index structure is better than that of the
LBAK-tree index structure.

Figure 8 shows the simulation result of the
comparison of the execution time of SAK query
in LBAK-tree index structure and the NAAK-tree
index structure with different number of data objects
NOB. From Figure 8, we show that the execution
time of SAK query in LBAK-tree index structure
increases faster than in the NAAK-tree index struc-



Fig. 7. A comparison of the execution time of building the index
with different NOB

Fig. 8. A comparison of the execution time of SAK query with
different NOB

Fig. 9. A comparison of the execution time of building the index
with different TV

ture.
In Figure 9, we set the space budget for building

approximate indexes SB to 100MB, and the number
of data objects NOB to 10000. It shows the simu-
lation result of the comparison of the construction
of the LBAK-tree index structure and the NAAK-
tree index structure with different threshold values
of leaf nodes. From the result, based on the NAAK-
tree index structure, the performance of building
the index with different TV is still better than the
LBAK-tree index structure.

V. CONCLUSION

In recent years, with the developments of Web
sites which support location-based keyword search,

SAK queries become a practical and popular prob-
lem. This problem focuses on effectively building
index and speeding up the SAK queries. In this
paper, we have proposed an NAAK-tree index struc-
ture. From the simulation results, we have shown
that building the index and answering SAK queries
based on our proposed NAAK-tree index structure
is more efficient than based on the LBAK-tree index
structure.

A. Acknowledgements
This research was supported in part by the Na-

tional Science Council of Republic of China under
Grant No. NSC-95-2221-E-110-101.

REFERENCES

[1] S. Alsubaiee, A. Behm, and C. Li, ”Supporting Location-Based
Approximate-Keyword Queries,” Proc. of the 18th SIGSPATIAL
Int. Conf. on Advances in Geographic Information Systems, pp.
61-70, 2010.

[2] S. Alsubaiee and C. Li, ”Fuzzy Keyword Search on Spatial
Data,” Proc. of the 15th Int. Conf. on Database Systems for
Advanced Applications, pp. 464-467, 2010.

[3] N. Beckmann, H. P. Begel, R. Schneider, and B. Seeger, ”The
R*-Tree: An Efficient and Robust Access Method for Points and
Rectangles,” Proc. of the 1990 ACM SIGMOD Int. Conf. on
Management of Data, pp. 322-331, 1990.

[4] Y. I. Chang, C. H. Liao, and H. L. Chen, ”NA-Trees: A Dynamic
Index for Spatial Data,” Information Science and Engineering
(SCI), Vol. 19, No. 1, pp. 103-139, 2003.

[5] I. D. Felipe, V. Hristidis, and N. Rishe, ”Keyword Search
on Spatial Databases,” Proc. of the 24th Int. Conf. on Data
Engineering, pp. 656-665, 2008.

[6] A. Guttman, ”R-Trees: A Dynamic Index Structure for Spatial
Searching,” Proc. of the 1984 ACM SIGMOD Int. Conf. on
Management of Data, pp. 47-57, 1984.

[7] R. Hariharan, B. Hore, C. Li, and S. Mehrotra, ”Processing Spa-
tial Keyword(SK) Queries in Geographic Information Retrieval
(GIR) Systems,” Proc. of the 19th Int. Conf. on Scientific and
Statistical Database Management, p. 16, 2007.

[8] S. Jordy, F. Flavius, H. Frederik, and C. Vadim, ”Semantic Web
service discovery Using natural language processing techniques,”
Expert Systems with Applications, Vol. 40, No. 11, pp. 4660-
4671, 2013.

[9] C. S. Roberts, ”Partial-match Retrieval via the Method of Su-
perimposed Codes,” Proc. of the IEEE, Vol. 67, No. 12, pp.
1624-1641, 1979.

[10] D. M. WU, M. L. Yiu, and S. J. Christian,”Moving Spatial
Keyword Queries: Formulation, Methods, and Analysis,” ACM
Transactions on Database Systems, Vol. 38, No. 1, pp. 1-47,
2013.

[11] Z. Wang, M. Du, X. Shi, and J. Le, ”An Efficient Approach
for Approximate Keyword Query in Geographic Information
System,” Proc. of the 2009 IEEE Int. Conf. on Intelligent
Computing and Intelligent Systems, pp. 603-607, 2009.

[12] B. Yao, F. Li, M. Hadjieleftheriou, and K. Hou, ”Approximate
String Search in Spatial Databases,” Proc. of the 2010 IEEE 26th
Int. Conf. on Data Engineering, pp. 545-556, 2010.


